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S C I E N C E  P O L I C Y

Diversification insulates fisher catch and revenue 
in heavily exploited tropical fisheries
James P. W. Robinson1*, Jan Robinson2, Calvin Gerry3, Rodney Govinden3,  
Cameron Freshwater4, Nicholas A. J. Graham1

Declines in commercial landings and increases in fishing fleet power have raised concerns over the continued 
provisioning of nutritional and economic services by tropical wild fisheries. Yet, because tropical fisheries are often 
data-poor, mechanisms that might buffer fishers to declines are not understood. This data scarcity undermines 
fisheries management, making tropical fishing livelihoods particularly vulnerable to changes in marine resources. 
We use high-resolution fisheries data from Seychelles to understand how fishing strategy (catch diversification) 
influences catch rates and revenues of individual fishing vessels. We show that average catch weight decreased 
by 65% over 27 years, with declines in all nine species groups coinciding with increases in fishing effort. However, 
for individual vessels, catch diversity was associated with larger catches and higher fishing revenues and with 
slower catch declines from 1990 to 2016. Management strategies should maximize catch diversity in data-poor 
tropical fisheries to help secure nutritional security while protecting fishing livelihoods.

INTRODUCTION
Tropical fisheries composed of diverse fleets, from low-technology 
artisanal fishers to large commercial vessels, contribute a large pro-
portion of domestic wild fish and dietary nutrition for tropical na-
tions (1) and provide employment for millions of people (2, 3). Recent 
national-scale catch reconstructions, however, have indicated that 
many tropical fisheries are declining (4, 5) as artisanal fishing effort 
accelerates (6), raising concerns over food security in tropical regions 
where growing human populations will require greater nutritional 
returns from marine resources (1, 7). Yet, analyses of national-scale 
databases mask changes in the status of specific fisheries (e.g., by gear 
or species) and are unable to identify differences in catch rates and 
fishing strategies among individual fishers and vessel types. Data defi-
ciency in tropical fisheries is compounded by the diversity within trop-
ical socioecological systems, where fishers typically target multiple 
habitats (demersal, pelagic, and coral reef) using various gears (lines, 
traps, and nets) to exploit hundreds of fish species (8–10). Without fine- 
scale information about catch composition, fishing effort, and catch 
rates, it remains unclear which fishers may be most affected by the 
depletion of fish populations and which management strategies can 
achieve sustainability in fisheries (11) while minimizing costs to fish-
ing communities (12).

Fishers may minimize economic risk during periods of environ-
mental change by pursuing catch strategies that balance exploitation 
across several populations (13). When populations fluctuate asyn-
chronously, this catch diversification can stabilize incomes to changes 
in catch rates of single stocks that might occur following ecological 
regime shifts (14) or spatial shifts in species distributions (15), and 
diversification has been proposed as a framework for promoting so-
cioeconomic resilience by buffering fishing revenues against species- 
specific declines associated with overfishing (13, 16). Diversification 
effects, however, are largely understood in the context of highly reg-
ulated commercial fisheries in the United States (15, 17, 18), leaving 

tropical systems understudied. Dynamics of data-rich temperate fish-
eries may be unreliable indicators of dynamics in tropical fisheries, 
which typically involve far higher numbers of fishers, use unconven-
tional governance systems, and may have greater standing stock bio-
mass (19, 20). As a result, catch diversification may operate differently 
in systems where marine resources are both unmanaged and heavily 
exploited. Diversification is frequently proposed as an adaptation strat-
egy to increase the resilience of tropical nations to changes in fishery 
resources (7, 21, 22), and yet, our empirical understanding of current 
levels of catch diversification practiced by tropical fishers is limited, 
while the effect of diversification on catch rates and fishing revenues 
is unknown.

In this study, we test how catch diversification affects the catch 
success of individual fishers participating in declining tropical fisher-
ies. We use a rare data-rich tropical fishery in Seychelles, an archi-
pelago nation in the Indian Ocean. In Seychelles’ exclusive economic 
zone of 1.37 million km2, offshore artisanal fisheries target over 100 fish 
species in pelagic and demersal habitats. These fisheries are unman-
aged but routinely monitored and account for 40% of artisanal landings 
with 80% of the catch sold and consumed domestically. The fishers 
exclusively use handlines but target different fish groups by altering 
the number of hooks, bait type, and line deployment strategy (vertical 
droplines, floated lines for midwater, and bottom set lines). Fishers 
may also supplement their typical catches by targeting seasonal spawn-
ing aggregations (23), night fishing, or fishing cooperatively to stimu-
late feeding by semipelagic species. Recent stock assessments indicate 
that several economically valuable species are at high risk of overex-
ploitation (24) but the landed seafood sustains an increasing local 
population, a growing international demand for tropical products, and 
a large tourism sector (25). Using daily catch data spanning 1990–2016, 
we quantify the magnitude of catch declines across different species 
groups. By tracking vessel-specific catch rates over 10 years, we model 
data on vessel size and effort, catch diversity, market value of species, 
and fishing ground size to understand how diversification influences 
catch rates and fishing revenues. Given the paucity of high-resolution 
catch data in tropical coastal nations, these data can provide an im-
portant empirical basis for investigating diversification effects in 
unmanaged artisanal fisheries in the tropics.
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RESULTS
Total catch per unit effort (CPUE) decreased substantially from 1990 to 
2016 across the fishery, with declines in all nine species groups con-
tributing to an overall 65% decline from 330 to 115 kg day−1 (Fig. 1A). 
The largest declines occurred for groups with the highest landed 
weights. For example, jacks (Carangidae; 193 to 109 kg day−1), snappers 
(Lutjanidae; 36 to 16 kg day−1), jobfish (Aprion virescens; 45 to 24 kg 
day−1), and barracuda (Sphyraenidae; 34 to 16 kg day−1) all declined 
by over 40% from 1990 to 2016 (Fig. 1B). Other target groups also 
declined at similar rates, but these were typically lower catch weights 
and thus contributed less to overall CPUE. Many species groups 
were characterized by nonlinear behavior with short periods of in-
creasing CPUE (2 to 6 years), and catches of jobfish, snappers, and 
barracudas were highest during the middle of the time series. Sharks, 
in contrast, were characterized by steady linear decline in CPUE from 
16 to 6 kg day−1. For all species, the lowest catch rates observed in the 
time series occurred in the most recently surveyed year (2016), and 
these CPUE declines contributed to a ~50% reduction in total landed 
weight over 2000–2016 (from ~200 to 100 metric tons month−1; 
fig. S2).

Long-term declines in fishery CPUE occurred during a spatial ex-
pansion of fishing grounds, a shift toward longer fishing trips, and 
increase in fleet size. For the 57 vessel monitoring data (VMS)–tracked 
vessels that were active in at least 5 years between 2006 and 2015, 
fishing vessels covered a greater area within the Mahé plateau fishing 
ground, with the average fishing area covered annually by one vessel 
increasing from 2300 to 3100 km2 (fig. S3A) and the total area cov-
ered by fishing vessels each year increasing from 28,000 to 32,000 km2 
(fig. S3B). Effort data from catch surveys were consistent with a fleet-
wide fishing ground expansion, with vessels using more fuel and un-

dertaking longer fishing trips over 1990–2016 (fig. S3, C and D). Over 
the same time period, the active fishing fleet increased fivefold, from 
16 to 82 active vessels year−1 (fig. S3E).

For a focal fleet of 41 vessels tracked from 2006 to 2015, the mag-
nitude and rate of catch declines varied among vessels (fig. S4), suggest-
ing that fishing strategy and vessel capacity might moderate fishing 
success (Table 1). Differences in vessel capacity were also strong pre-
dictors of catch success (Fig. 2, A, B, and E). CPUE increased fivefold 
from the smallest (3 m, 50 kg day−1) to largest boats (13 m, 270 kg 
day−1) and from 130 to 260 kg day−1 as engine power increased from 
2 to 195 horsepower. Vessels that expended more effort had lower 
catch rates, with CPUE declining as fishing trip length increased 
from 1 to 7 days (225 to 70 kg day−1; Fig. 2C). Vessels fishing in east-
ward locations also had marginally greater catch rates than those in 
westward locations, although most vessels operated between 55° and 
56° (Fig. 2D).

With these vessel and spatial characteristics accounted for, we de-
tected an effect of fishing strategy, with a strong positive effect of catch 
diversification on catch rates (Fig. 2E). For individual fishing trips, 
vessels targeting a more diverse range of fish species could increase 
their catch rate by up to ~50 kg day−1, relative to catches of single species 
groups (Fig. 3A). For the entire fleet across the entire monitoring time 
series, catch diversity provided some buffering of catches from long-term 
declines in CPUE (Fig. 3B), whereby CPUE of high diversity catches 
declined at a slower rate than did CPUE of low diversity catches. These 
effects did not coincide with temporal changes in catch diversity, 
which remained relatively constant from 1990 to 2016 (mean diver-
sity, 0.64 ± 0.012; mean turnover, 0.74 ± 0.013), and were not caused 
by differences in catch diversity between the focal fleet and the full 
fleet (fig. S5) or correlations with vessel size (fig. S6). Catch turnover 
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Fig. 1. Catch-per-unit-effort (kilograms per day) per fishing trip from 1990 to 2016. (A) Total catches, where line is predicted generalized additive model (GAM) 
temporal smooth excluding seasonal, oceanographic, and vessel effects (±2 SEM), overlaid with points showing the partial effect of all other model covariates. (B) Catches 
by species group, where species are ordered by the relative contribution to overall catches. Lines are GAM temporal smooth predictions excluding seasonal, oceanographic 
and vessel effects, colored according to the percent change in CPUE relative to its maximum value (see fig. S1 for SEM of species-level trends).
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over longer time periods (i.e., within years) was only weakly associated 
with catch rates (Fig. 2E).

Vessel revenue also increased with catch diversification (Fig. 4, 
A and B). At the scale of individual fishers, revenue was partially 
associated with catch rates (for CPUE and USD per fisher per day, 
Pearson’s correlation r = 0.33) and, as a result, increased with catch 
diversity from 160 to 280 USD (per fisher per day; Fig. 4A). Even if 
correcting revenue by catch weight (USD per kilogram per fisher per 
day), strong catch diversification effects on revenue were only detected 
in 5 of 11 years, based on catch composition alone (Fig. 4C). These 
years coincided with high market values of rarer species such as red 
snappers, jobfish, and grouper, which had relatively low catch rates 
(CPUE, 17.5 to 84.5 kg day−1) but, from 2013 to 2016, were over double 
the market value of the most commonly caught species (jacks: CPUE, 
260 kg day−1) (Fig. 4D).

DISCUSSION
By distributing effort across a diverse stock portfolio, catch diversifi-
cation across fisheries can help fishers to maintain catch rates during 
periods of variable abundance in fished populations (14). Yet, for 
tropical fisheries, which typically target high diversity ecosystems, the 
portfolio of strategies used by different fishers and effects of diversi-
fication on fishing success are unknown. Our study demonstrates 
that catch diversification raises the size and market value of catches 
and somewhat buffers individual vessels to long-term declines across 
multiple species groups. In addition to variation in catch rates caused 
by differences in vessel capacity, these analyses highlight mechanisms 
by which small-scale fishers may vary in their vulnerability to declining 
resources. The long-term declines in catch rates and total landed weight 
were concurrent with a quadrupling of fleet size, suggesting that ex-
ploitation pressure on pelagic and demersal fisheries has increased 

Table 1. Covariates for predictive models fitted to focal fleet datasets (2006–2015). CAS, catch assessment surveys; SFA, Seychelles Fishing Authority vessel database 
collected in 2017; VMS, vessel monitoring data. Scale indicates the resolution of data collection. CAS covariates were averaged across surveys to give annual estimates. 

Covariate Definition Scale Source Vessel trait

Fishing strategy

Catch diversity Simpson’s index of catch 
diversity

Individual fishing trip CAS Ability to target multiple 
species buffers catches to 
declines in single species 

groups (within fishing trips)

Catch composition Bray-Curtis index of catch 
dissimilarity

Annual CAS Ability to switch target 
species buffers catches to 
declines in single species 

groups (among fishing trips)

Vessel capacity

Longitude Longitude of fishing activity Annual VMS Location of fishing grounds

Latitude Latitude of fishing activity Annual VMS Location of fishing grounds

Fishing ground area Area of fishing activity 
(square kilometers)

Annual VMS Ability to explore large and/
or distant fishing grounds 

where fish populations may 
be less exploited or access 

areas of seasonal abundance 
(e.g., fish aggregations) 
buffers catches to local 

declines

Boat size Length of boat (meters) SFA Influences fishing trip 
duration, fishing ground 

area, capacity to store fish, 
size of crew, impact of sea 
condition, amount of gear; 

enables vessels to target 
distant fisheries

Engine power Engine size (horsepower) SFA Determines time spent 
fishing versus traveling to 

fishing grounds

Fuel Fuel consumed (metric tons 
and USD)

Individual fishing trip CAS Financial capacity for distant 
and/or multiday fishing trips 

that may provide larger 
catches

Fishing trip duration Days spent at sea Individual fishing trip CAS Longer fishing trips may 
enable fishers to reach 

distant and less-exploited 
fishing grounds, increasing 

catch rates

 on F
ebruary 24, 2020

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/


Robinson et al., Sci. Adv. 2020; 6 : eaaz0587     21 February 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

4 of 9

substantially. Given the magnitude of catch declines, these findings 
indicate that recent calls for diversifying tropical fisheries to safe-
guard food security in the tropics (7) will be constrained by the ex-
ploitation status of coastal fishing stocks.

Our focus on heavily exploited fisheries reveals that catch diver-
sity can partially insulate fishers against long-term declines in catch 
rates. Fishing vessels that targeted multiple species in one fishing trip 
using several gear strategies (e.g., depth, bait, and line deployment; 
see Materials and Methods) had greater success than those who spe-
cialized on fewer groups. At this scale, diversification may raise CPUE 
simply by minimizing the inherent uncertainty associated with tar-

geting specific species in wild fisheries (13). Integrating CPUE with 
market price data indicated that more diverse catches were also more 
valuable and returned greater revenues. Because overall catches were 
dominated by relatively low-value Carangidae species, diversification 
likely promoted the potential market value of catches through both 
greater catch rates and inclusion of rarer and high-value species such 
as red snapper, grouper, and jobfish. These findings for unmanaged 
and declining tropical fisheries are consistent with those from highly 
regulated temperate commercial fisheries, which show that fishers 
with diverse catch portfolios have greater revenues (18). Turnover in 
catch composition (Bray-Curtis dissimilarity among catches per year) 
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was a weak influence on CPUE, indicating that fishers who changed 
targeted species between fishing trips had similar catch rates to those 
who specialized on certain species groups. Turnover of catch compo-
sition may help buffer fishers to declines over longer time periods (e.g., 
interannual or decadal) (14, 26), which span the considerable interan-
nual variability in CPUE of multiple species groups (Fig. 1B) (24).

In managed commercial fisheries, the ability to diversify is con-
strained by individual fishing capacity and by fisheries regulations. 
For example, in fisheries regulated with individual fishing quotas, 
holding catch portfolios can be prohibitively expensive (18), and if 
distant fishing grounds are only accessible to fishers with large vessels, 
then portfolio strategies may be limited by vessel size or the proximity 
of fisheries to ports (17). In Seychelles, despite larger and more pow-
erful boats returning the highest catch rates, portfolio strategies were 
not linked to boat size, and diversification effects on catch revenue 
were independent of catch size. This lack of economic constraint on 
catch diversity may arise because the offshore fisheries are exploited 

by one gear type (handlines) and most vessels are constrained to a com-
paratively small shallow plateau (41,000 km2, <100 m deep; fig. S9). 
Fishing is unmanaged, which allows all fishers to target all stocks, and 
thus, diversification strategies are likely to be equally available to all 
vessels. It is unclear why only some fishers successfully pursued diverse 
catch portfolios (fig. S5), although the knowledge and skills required 
to target multiple species may be linked to fishers’ age and experience 
(27, 28). Variation in fishing capacity does, however, indicate differ-
ences among fishers in vulnerability to changes in resource availability. 
For example, catch size is an indicator of a fishers’ (hypothetical) read-
iness to exit a declining fishery (29), which suggests that small boat 
fishers are most likely to leave these fisheries. Alternatively, fishing 
crews of large vessels may be more vulnerable if fishing costs (e.g., fuel 
and crew size) are not offset by their greater fishing capacity.

In other catch diversification studies, the availability of highly re-
solved catch and revenue data has been used to understand how fish-
ing specialization changes over time for individual vessels (30, 31). 
Here, catch surveys were composed of random subsamples of the 
offshore fleet. Although we increased the temporal resolution of our 
diversification analysis by selecting vessels that were most active and 
surveyed frequently (focal fleet vessels were ~70% of the full fleet 
from 2006 to 2015), these snapshot surveys required us to average 
predictor covariates at the scale of years rather than daily or monthly 
catches. As a result, we were unable to model seasonal shifts in catch 
diversity that might arise from vessels targeting spawning aggrega-
tions (23) or from ocean conditions constraining the availability of 
certain fishing grounds (32). Similarly, Seychelles’ fishers diversified 
their catches by changing fishing depth, hook number, and line deploy-
ment strategies, which contrasts with other diversified fisheries where 
catch portfolios typically hold multiple gear types (18). Nevertheless, 
tropical fisheries are among the most data-deficient fishing sectors 
(4), meaning that the long-term catch and vessel monitoring datasets 
analyzed here are unusually highly resolved.

Collectively, the declining CPUE and landed weights of multiple- 
species groups and overall increase in number of fishing vessels sug-
gest that targeted fish populations have declined. Because available 
fishing areas are largely restricted to the 41,000-km2 Mahé plateau, 
and mostly at 5- to 65-m depth (fig. S9) (24), the spatial expansion of 
fishing grounds within this area and increase in fuel consumption 
further indicate that fishers expended greater effort without generat-
ing higher catches. Although industrial tuna fisheries operating out 
of Seychelles are well developed, these vessels operate beyond the Mahé 
plateau including in international waters (24, 33) and are unlikely to 
contribute to the declining catches reported here. Fuel subsidies have 
been provided since 1991 and may have stimulated the increase in 
fishing effort. With the offshore fisheries analyzed here contributing 
>40% of domestic landings in Seychelles (33), the effects of long-term 
declines in pelagic and demersal fisheries on fishing livelihoods and 
local food supplies require further investigation.

For tropical island nations, proposed adaptations to maintain food 
security in the face of climate-driven declines in coastal fisheries 
(34, 35) have focused on increasing the exploitation of offshore fish 
stocks, such as tuna and small pelagic species (21, 36). These strate-
gies, however, assume that all fishers have the capacity to exploit off-
shore resources and that tuna and pelagic fisheries are more resilient 
to ocean warming than coastal fisheries. Our findings suggest that 
offshore locations are more successfully targeted by larger vessels and, 
therefore, the shorter range and storage capacity of smaller vessels may 
limit poorer fishers to coastal fisheries that are more heavily exploited 
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(32). In addition, while this offshore fishery is in decline, the coastal 
coral reef fisheries have maintained or increased their catch levels de-
spite ocean warming causing widespread loss of coral habitat and eco-
logical regime shifts (37). Given the scarcity of data in other tropical 
nations, it is critical that strategies for adapting tropical fisheries to cli-
mate impacts incorporate information about the availability of emerg-
ing fisheries resources to small-scale fishers (e.g., offshore stocks), as 
well as changes to coastal fisheries arising from ocean warming (e.g., 
coral bleaching).

Here, we have identified two major factors that determined catch 
rates in heavily exploited and unmanaged fisheries in Seychelles. First, 
vessels with diverse catch portfolios recorded larger catches and expe-
rienced slower declines in catch rates during a period of substantial 
declines in multiple-species groups. Because diverse catches were 
larger and rarer species had high market values, catch diversification 
also produced greater fishing revenues. Second, smaller low-powered 
vessels had the lowest catch rates, and so those fishers may be most 
vulnerable to declines in fish populations and to future environmental 
changes (38). Because the effects of vessel capacity and catch diversity 
are not well understood for most tropical nations, analyses such as 
ours can be used to help transition tropical fisheries toward manage-
ment strategies that maintain seafood supply and protect fisher in-
comes when marine resources are depleted. Diversification strategies 
must also be balanced against the need to limit fishing of rare or long-
lived species that may be particularly vulnerable to heavy exploitation. 
For unmanaged tropical fisheries where effort is accelerating (6) and 
landings are declining (5), such as those in Seychelles, the introduc-
tion of effort controls alongside considerations of how diversifica-
tion strategy and vessel capacity (e.g., size) influence catch rates will 
be paramount.

MATERIALS AND METHODS
Seychelles’ offshore fisheries
The sampled fishery targets pelagic- and demersal-associated species 
between 0- and 60-m depth and contributes ~40% of landed weight 
(959 metric tons in 2016; table S1) of all domestic artisanal fisheries 
in Seychelles (33, 39). Catches are consumed locally (80%) or exported 
(20%) and are primarily composed of species in the Carangidae, 
Lutjanidae, Serranidae, and Sphyraenidae families (table S1) (33). 
Fishing grounds are primarily located on a shallow shelf (“the Mahé 
plateau”, ~ 41,000 km2, <100-m depth) and exploited by a diverse 
fleet ranging from low-powered outboards to vessels with inboard 
motors, capable of fishing for up to 8 days with a 100-km range. All 
fishers use handlines, but the number of hooks, bait type, and line 
deployment strategy (vertical droplines, floated lines for midwater, 
and bottom set lines) is altered according to target species. Fishers 
may also supplement their typical catches by targeting seasonal spawn-
ing aggregations (23), night fishing for barracuda, or fishing coopera-
tively to stimulate feeding by semipelagic species. These fisheries are 
regulated through fishing licenses, but there are no management con-
trols on fishing effort.

Catch assessment surveys
Catch and effort data were collected by catch assessment surveys 
conducted from 1990 to 2016 by Seychelles Fishing Authority (SFA). 
Surveys included major fish landing sites in the inner Seychelles, and 
survey effort was stratified by the number of registered vessels per 
site. In each survey, SFA staff interviewed fishers immediately after 

fishing trips to assess trip effort and measured the weight of the landed 
catch. Catches were categorized into 32 groups according to how 
species are sold at local markets. Because survey groups contained 
different numbers of species and some closely related species were 
assigned to multiple groups, we further combined these into eight 
groups of related species and one group of target species typically as-
sociated with coastal habitats (table S1). For the purposes of this study, 
we treated each species group as a distinct fishery. Effort data included 
the number of days fished, cost of fuel, bait and gear, number of lines 
deployed, and size of fishing crew. Fuel costs were corrected for in-
flation for revenue analysis and also converted to volume of fuel used 
as a measure of fishing trip distance. After excluding surveys with 
missing effort data, the SFA database was composed of 18,458 fishing 
trips (mean number of surveys, 683 year−1 and 60 month−1) collected 
from 224 fishing vessels. Corresponding estimates of fisheries land-
ings (metric tons per month) were developed by SFA for 2000–2016.

Modeling catch and effort trends
Catch weights were standardized by fishing trip effort to give catch per 
day fishing (kilograms per day; CPUE) for all species combined and 
for each species group. We presented CPUE in terms of catch per day 
fishing rather than per line per day fishing because the number of hand-
lines deployed did not vary strongly among years (mean = 3.8 and 
SD  =  0.65), such that kilograms per handline per day was strongly 
correlated with kilograms per day (Pearson’s correlation r = 0.93) 
(fig. S10). We noted that CPUE estimates were derived from species 
groups containing multiple species and thus may mask changes in the 
catchability or abundance of single species within groups.

For effort, we measured individual vessel effort as the average num-
ber of fishing days and fuel consumption per fishing trip and mea-
sured fleet size as the number of unique registered vessels surveyed in 
each year. For each of the 13 response variables (total CPUE, CPUE of 
each of the nine species groups, number of fishing days, fuel consump-
tion, and fleet size), we fitted generalized additive models (GAMs) to 
identify temporal patterns that were standardized by seasonal and 
oceanographic influences. In Seychelles, seasonal monsoon patterns 
can influence fishing activity through its effect under sea condition 
(40). Offshore fishing activity is reduced during exposed, stormy con-
ditions of the Southeast monsoon from June to September and highest 
during the calmer Northwest monsoon from December to March. To 
account for potential oceanographic effects on catch rates, we ex-
tracted monthly indices for the El Niño/Southern Oscillation (ENSO; 
BEST; www.esrl.noaa.gov/psd/people/cathy.smith/best/#years) and 
Indian Ocean dipole [dipole mode index (DMI); www.esrl.noaa.gov/
psd/gcos_wgsp/Timeseries/DMI/] indices from remote sensing data-
sets, which capture intra- and interannual variation in sea surface 
temperatures whereby positive ENSO (El Niño) and DMI phases cor-
respond with ocean warming, and negative ENSO (La Niña) and DMI 
phases correspond with ocean cooling (41, 42).

All GAMs were fitted with sequential month-year (2004–2016), 
Julian month (1 to 12), ENSO index, and DMI index as fixed effects 
with smoothers ( f ), and vessel ID as a random intercept term

   
 CPUE  i   = α + f( monthyear  i  ) + f( month  i  ) + 

    
     f( ENSO  i  ) + f( DMI  i  ) +  α  vessel[i]  

    (1)

for Gamma-distributed errors. Month-year, ENSO, and DMI terms 
were fitted as cubic regression splines, and the Julian month term was 
cyclic (37). The degree of smoothing (i.e., knot value) was determined 
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by generalized cross-validation (43), models were diagnosed for nor-
mality with residual plots, and model fits were assessed with deviance 
explained values. We visualized temporal trends by predicting each 
response covariate over time, excluding seasonal, oceanographic, and 
vessel effects by setting those covariates to their mean value.

Catch diversification and vessel capacity analysis
We examined how catch diversification and vessel capacity influ-
enced CPUE in a focal fleet of 41 vessels. Although catch surveys were 
available from 1990 to 2016, we focused on CPUE trends from 2006 to 
2015 when VMS were available. To ensure boats were regularly fishing 
across this time period and thus had opportunities to change behavior 
in response to catch declines, we selected vessels where recorded 
catches were in at least 5 years between 2006 and 2015. CPUE trends 
were analyzed with the same GAM structure as for the full CAS dataset 
but including a random smooth term that modeled temporal trends 
for each vessel (44).

   
 CPUE  i   = α + f( month year  i  ) + f( month  i  ) + f( ENSO  i  ) + 

      
             f( DMI  i  ) +  f   vessel  i    ( month year  i  )

   (2)

We extracted individual vessel catch trends from the fitted model 
by predicting the monthly CPUE for each vessel, holding seasonal 
and oceanographic covariates to their means (0). Using these model 
predictions, we quantified catch trends using the average annual CPUE 
for each focal vessel.

We examined variation in predicted catch trends using mixed ef-
fects models fitted with covariates on catch diversification and vessel 
capacity (Table  1). Larger vessels with greater engine power likely 
have the highest catch rates due to their ability to exploit distant fish-
ing grounds, lower impact of adverse sea conditions, and greater ca-
pacity for ice and catch storage. In addition to vessel capacity, fishers 
who spend more time at sea (fishing days) or cover larger fishing 
grounds may have larger catches than those limited to single-day 
trips in fewer fishing locations. We extracted the duration (number 
of days) and fuel cost of each fishing trip recorded in catch surveys 
and averaged for each year. Boat size (length in meters) and engine 
power (horsepower) were provided by an SFA census of fishing 
fleets that was conducted in 2017.

We used VMS data to estimate the area of operation of each focal 
vessel from 2006 to 2015 (45). We extracted the Global Positioning 
System coordinates of all registered vessels fishing offshore (i.e., on 
the Mahé plateau) and examined movement patterns of vessels which 
were actively fishing by filtering the dataset to tracks with a recorded 
speed of <2 knots. Potential fishing activity in shallow coastal habitats 
was excluded by removing all points within 1 km of coastline (45), and 
incomplete fishing movements when sequential points were over 
4 hours apart were removed. Each point was assigned a cell in a 10-min 
grid (cell area of ~340 km2 at −4.5°S). We defined fishing activity in 
each year using point summation (45) where proportional fishing ac-
tivity (%) was the number of points in each cell divided by the total 
number of points. From this spatial dataset, we filtered cells to those 
containing 90% of cumulative fishing activity, which focused our 
analysis on the core fishing grounds and excluded marginal fishing 
areas (46). Model covariates derived from VMS data were the total 
area covered at fishing speeds (square kilometers) in each year and, as 
indicators of average fishing location, the median latitude and longi-
tude per fishing trip averaged for each year (Table 1). Although the 
coarse spatial resolution likely overestimates the true fishing ground 

area (47), the resolution is consistent in time, and we used these 
estimates as proxies for the potential area of operation in the fishery 
rather than quantifying the spatial footprint of Seychelles’ fisheries. 
Because we excluded incomplete VMS data and catch surveys sub-
sampled fishing vessels and fishing trips, we were unable to match 
spatial movement data to catch records at the scale of individual 
fishing trips. Thus, VMS covariates estimate the fishing movement 
pattern of each vessel in each year.

We measured catch diversification at two scales: individual fishing 
trips and across all fishing trips in each year. We selected vessels with 
at least 10 recorded catches year−1 to ensure that surveys captured 
potential variation in the catch composition of each vessel. For individ-
ual fishing trips, catch diversity of each vessel v was the annual average 
Simpson index D of each catch, where p is the proportional catch weight 
of each species a for total species catch groups S (Eq. 3). High values 
indicate diverse catch portfolios, and low values indicate catches special-
ized to fewer species groups. For fishing trips in each year, the annual 
turnover in catch composition was the Bray-Curtis dissimilarity 
across all catches (1, 2, 3 … N; T = total annual catch; one trip = one 
catch) for each vessel in each year (“multisite b-dissimilarity”) (48), 
where high values indicate a greater degree of turnover among multiple 
catches within 1 year (Eq. 4). To reduce the dependence of diversity 
metrics on high biomass carangid catches, we estimated diversity 
metrics using log10(x + 1)–transformed catch weights.

   D  v   = 1 −   ∑ 
a=1

  
S
     p a  2    (3)

   β  v   =   
[N  ∑ a  S    max( x  ab  ,  x  ac  ,  x  ad  ,  x  ae  , … ) ] − T

   ────────────────────  (N − 1 ) T    (4)

We fitted Bayesian linear mixed-effects models with standard-
ized explanatory covariates (mean = 0 and SD = 1) and random in-
tercept terms which accounted for temporal correlations in catch 
trends of individual vessels and within years. To examine the rela-
tive influences of diversification and fishing capacity on catch rates, 
we fitted the model

    μ  i   = α +  β  1    daysfishing  i   +  β  2    fishedarea  i   +  β  3    latitude  i   +      
  β  4    longitude  i   +  β  5    fuelconsumed  i   +  β  6    enginesize  i   +     

  β  7    boatsize  i   +  β  8    diversity  i   +  β  9    turnover  i   +  α  vessel[i]   +  α  year[i]    

(5)

for each vessel ~ year combination I and Gamma-distributed annu-
al mean CPUE (log link)

   CPUE  i   ∼ Gamma( μ  i  , k)  (6)

Model priors were drawn from normal distributions with mean = 0 
and SD = 10 [i.e. N(0, 10)] for  covariates, Cauchy(0, 2) for variance 
terms vessel and year, and Exp(2) for Gamma shape parameter k 
(table S2). Model parameters were estimated by Markov chain Monte 
Carlo (MCMC) sampling of 7000 iterations across three chains, and 
model convergence was assessed with posterior predictive checks 
and inspecting    ̂  R    and the number of effective samples. Covariate ef-
fect sizes were visualized by sampling 1000 values from the posterior 
distribution and estimating 50% (weak inference) and 95% (strong 
inference) credible intervals (CIs). For covariates with 50% CIs, which 
did not overlap zero, we visualized predicted effects by computing 
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posterior predictions along the range of that covariate, excluding ef-
fects of other fixed covariates and variance terms.

Long-term effects of diversification
We examined the potential for diversification to buffer fishers against 
long-term declines in CPUE by extending the focal fleet model to the 
full catch time series. For all vessels with at least five recorded catches 
in each year from 1992 to 2016, we estimated the daily catch diver-
sity of each landed catch. We examined the effect of catch diversity 
in moderating the linear rate of temporal CPUE declines by fit-
ting a Bayesian model with time and catch diversity as interacting 
fixed effects

   
 μ  i   = α +  β  10    time  i   +  β  11    diversity  i   +  β  12   time ∗  diversity  i   +      
           β  13    boatsize  i   +  α  vessel[i]  

   (7)

for Gamma-distributed CPUE (Eq. 6), following the same MCMC 
sampling procedure, diagnostic tests, and data visualization approach 
used for the focal fleet model. Correlations in CPUE of individual 
vessels were accounted for using a random-varying intercept term, 
and vessel size (the strongest predictor in the focal fleet model) was 
included as a fixed-effect term. Model priors were weakly informative 
[fixed effects, N(0, 10); intercept, N(5.1, 10); vessel term, Cauchy(0, 2); 
Gamma shape parameter k, Exp(2)] (table S2).

Catch price analysis
We examined how catch diversification might affect the revenue col-
lected by individual fishing vessels using a price database, which indi-
cated the market value of fishery targets between 2008 and 2017. SFA 
generated the database from market prices of commonly caught pe-
lagic and demersal species sold by wholesalers or direct purchases 
from offshore fishers. We estimated the potential market value of each 
surveyed catch group, corrected to unit weights (per kilogram) and 
adjusted to 2010 prices using the World Bank’s Consumer Price Index 
(https://data.worldbank.org/indicator/FP.CPI.TOTL.ZG?locations=SC). 
By combining price data with the focal fleet data (2006–2015, fitted to 
Eq. 5), we then estimated the potential catch value of each surveyed 
catch, corrected for effort and catch weight. Revenue of each fishing 
trip was the catch value minus fuel, bait, and gear costs, which we cor-
rected for effort (USD per fisher per day) and for catch weight (USD 
per kilogram per fisher per day) and averaged across trips per year to 
give average daily revenues per vessel. Price data were unavailable for 
2006–2007, and these years were estimated using prices in 2008.

We modeled revenue as a function of diversity, fitting random in-
tercepts for vessels, as well as random slopes and intercepts for year 
(Eq. 9). This structure accounted for vessel- and year-specific devia-
tions in mean values, as well as year-specific deviations in the rela-
tionship between diversity and revenue. We assumed that revenue 
followed a Student t distribution (Eq. 8), which, as a heavy-tailed dis-
tribution, accounts for an increased probability of extreme events (49), 
and capped extreme revenues above 99% and below 1% of the reve-
nue distribution. The Student t distribution includes an additional 
parameter v representing the degrees of freedom and controlling the 
weight of the distribution’s tails—as v approaches infinity, the t dis-
tribution converges on the normal. Revenue models were fit with four 
chains and 3000 iterations, and chain convergence was assessed by 
inspecting    ̂  R    and the number of effective samples.

   revenue  i   ∼ Student t(v,  μ  i  , σ)  (8)

     i   =  + ( +    year[i]   )  diversity  i   +    vessel[i]   +    year[i]    (9)

All analyses were conducted in R 3.6.0 (50). GAMs were fitted in 
mgcv (43), catch diversity metrics were estimated using vegan (51) 
and betapart (52), and Bayesian hierarchical models were implemented 
in Stan 2.18.1 using rethinking (53) and RStan (54). We provided data 
and R code at an open source repository (github.com/jpwrobinson/
tropical-catch-div).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/8/eaaz0587/DC1
Fig. S1. Change in CPUE from 1990 to 2016 for eight species groups.
Fig. S2. Total landed weight from offshore fisheries over 2000–2016.
Fig. S3. Fishing grounds of the focal fleet (2006–2015) and effort of the full fleet (1992–2016).
Fig. S4. Vessel catch trends for the 41 vessels in the focal fleet over 2005–2016.
Fig. S5. Catch diversification from 1990–2016 for full and focal fleets.
Fig. S6. Catch diversification according to boat length.
Fig. S7. Effect of catch diversity on daily fishing revenue (USD per fisher per day) across years.
Fig. S8. Market value of each target group for 2008–2016 (USD per kilogram).
Fig. S9. Spatial movement and fishing grounds of focal fleet from 2006 to 2015.
Fig. S10. Correlation between CPUE metrics.
Table S1. Species caught in Seychelles’ offshore small-scale fisheries, categorized into groups 
of closely related species or species that share similar habitats (i.e., the fisheries analyzed).
Table S2. Prior distributions for Bayesian models.
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